#3.2 Laplace Transform-2(라플라스변환법 기본공식들)

공학수학engineering math 2020. 4. 17. 22:50
반응형

 

#0. 기본공식

지난글에서 간단하게 변환이란것에 대해 소개하고, 그 중 라플라스 변환이란 것에 대해서 알아보았습니다. 오늘은 라플라스 변환공식들중 대표적인 것(다항함수, 지수함수, 삼각함수)들을 직접 계산해보고 결과를 얻어내 보겠습니다.  위의 표는 라플라스 변환표 입니다.

 

#1. 다항함수

다항함수의 경우 차수가 커져도 일정한 규칙이 보이기 떄문에 일단 t 부터 알아보도록하겠습니다.

 

t제곱도 넣어보도록 하겠습니다.

 

마지막항을 보면  t를 넣었을때와 비교해서 바뀐건 2t로 된것이지요? 즉 t를 넣었을때의 과정이 2번 이루어지고 t의 차수가 한번 더 곱해지는 것과 같으므로 값은

이 됩니다. t 세제곱을 넣어도 마찬가지일것입니다. 결국 분모의 차수는 t의 차수를 따라가고 적분되면서 t의 차수가 한번 더 곱해진다고 생각하면 분자는 1x2x3x4x....xN의 형태를 띄게 되겠지요. 그래서 일반식을 적어보면

이런식을 가지게 됩니다.

 

#2. 지수함수

지난 글의 마지막부분을 보면 s-shifting 이란것을 잠시 언급했을겁니다. e^at 같은 경우 라플라스 식안에도 지수함수가 들어가 있기 떄문에 계산이 쉽습니다.

어떤 함수든간에 앞에 e^at 꼴이 곱해져있다면 그만큼 s->s-a를 대입해서 변환 할 수 있습니다. 라플라스는 S세상에서 벌어지는 일이라고 했습니다. 그렇다면 xy평면에서 벌어지는 일과같이 라플라스에서는 s축방향으로 a만큼 평행이동했다고 생각할 수 있습니다. 즉, e^at 는 s축의 방향으로 평행이동할 수 있는 도구인 셈이지요. 이것을 s-Shifting 이라고 합니다. 나중에 복잡한 형태의 라플라스 역변환시에 s-a형태를 발견한다면 평행이동을 통해 더 쉽게 구할 수 있게 되는 것입니다.

 

 

#3. 삼각함수

 

삼각함수의 경우 cos과 sin이 서로 미분했을때 비슷해지기 때문에 서로에 대한 라플라스값을 이용하게 됩니다.

 

마지막항을 보면 앞의 계수 w/s를 제외하고 보면 sinwt 의 라플라스 변환식과 동일해집니다. 따라서 이것을 반영해서 계산식을 다시 세우면

가 됩니다. 그렇다면 반대로 sin을 라플라스 변환하면 cos에 관한 라플라스가 나오게 되겠죠?

 

이것을 위의 coswt 변환에 넣어주면

마찬가지로 sin의 변환값에 cos값의 변환을 대입하여 계산해주면

이 됩니다.

 

#4. s- Shifting

 

앞에서 언급했던 s축 평행이동입니다. 어떤 함수에 지수함수꼴이 곱해져 있다면 쉽게 변환 할 수 있다는 것이지요. 예시를 통해 확인 하고 넘어가도록 하겠습니다.

이렇게 해서 라플라스변환법의 기본적인 공식들에 대한 증명들을 해보았습니다. 다음글에서는 미분방정식을 직접 라플라스변환하여 좀 더 쉽게 풀이하는 방법들에 대해서 알아보도록 하겠습니다.

 

 

반응형